Extending the generality of leaf economic design principles in the cycads, an ancient lineage

Yong-Jiang Zhang1,2*, Kun-Fang Cao3*, Lawren Sack4*, Nan Li5, Xue-Mei Wei5 and Guillermo Goldstein6,7

1Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China; 2Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; 3State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and College of Forestry, Guangxi University, Nanning, Guangxi 530004, China; 4Department of Ecology and Evolutionary Biology, University of California, 621 Charles E. Young Drive South, Los Angeles, CA 90095-1606, USA; 5National Cycad Germplasm Conservation Center, Fairylake Botanical Garden, Shenzhen and Chinese Academy of Sciences, 160 Xianhu Rd., Liantang, Shenzhen 518004, China; 6Department of Biology, University of Miami, PO Box 249118, Coral Gables, FL 33124, USA; 7Departamento de Ecología Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Nuñez, Buenos Aires, Argentina

Authors for correspondence:
Yong-Jiang Zhang
Tel: +1 617 496 3580
Email: yongjiangzhang@oeb.harvard.edu

Kun-Fang Cao
Tel: +86 771 3274251
Email: kunfangcao@gxu.edu.cn

Received: 13 May 2014
Accepted: 8 December 2014

New Phytologist (2015)
doi: 10.1111/nph.13274

Key words: Cycadales, Cycas, functional convergence, gymnosperms, leaf economic spectrum, leaf hydraulic conductance, photosynthetic capacity, trade-off.

Introduction

Cycads are the most ancient lineage of living seed plants, but the design of their leaves has received little study. We tested whether cycad leaves are governed by the same fundamental design principles previously established for ferns, conifers and angiosperms, and characterized the uniqueness of this relict lineage in foliar trait relationships.

These findings extend the relationships shown for foliar traits in angiosperms to the cycads. This functional convergence supports the modern synthetic understanding of leaf design, with common constraints operating across lineages, even as they highlight exceptional aspects of the biology of this key relict lineage.

Summary

• Cycads are the most ancient lineage of living seed plants, but the design of their leaves has received little study. We tested whether cycad leaves are governed by the same fundamental design principles previously established for ferns, conifers and angiosperms, and characterized the uniqueness of this relict lineage in foliar trait relationships.

• Leaf structure, photosynthesis, hydraulics and nutrient composition were studied in 33 cycad species from nine genera and three families growing in two botanical gardens.

• Cycads varied greatly in leaf structure and physiology. Similarly to other lineages, light-saturated photosynthetic rate per mass (Aₘ) was related negatively to leaf mass per area and positively to foliar concentrations of chlorophyll, nitrogen (N), phosphorus and iron, but unlike angiosperms, leaf photosynthetic rate was not associated with leaf hydraulic conductance. Cycads had lower photosynthetic N use efficiency and higher photosynthetic performance relative to hydraulic capacity compared with other lineages.

• These findings extend the relationships shown for foliar traits in angiosperms to the cycads. This functional convergence supports the modern synthetic understanding of leaf design, with common constraints operating across lineages, even as they highlight exceptional aspects of the biology of this key relict lineage.

*These authors contributed equally to this work.

© 2015 The Authors
New Phytologist © 2015 New Phytologist Trust
www.newphytologist.com

New Phytologist (2015) 1
Fig. 1 Relationships among leaf nitrogen (N) concentration (\(N_{\text{m}}\)), leaf mass per area (LMA, or canopy mass per area for mosses) and light-saturated photosynthetic rate per mass (\(A_{\text{m}}\)). Closed black circles, Glopnet (mainly angiosperms but also with conifers and three cycads) (Wright et al., 2004); closed green circles, mosses (Waite & Sack, 2010); open circles, ferns (Karst & Lechowicz, 2007).

Recent work has shown that the leaf economics spectrum (LES) is a framework that describes the trade-offs in leaf structure, nutrient content, and gas exchange that occur in different species across a range of ecosystems (Reich, 1997; Wright et al., 2004). These relationships, known as ‘leaf economic spectrum’ (LES) relationships, arise when photosynthetic rate per leaf area (\(A_{\text{l}}\)) and leaf N per area (\(N_{\text{m}}\)) are partially or fully independent of LMA. The conversion of \(A_{\text{l}}\) to \(A_{\text{m}}\) by dividing by LMA thus results in LES relationships by mathematical necessity (Lloyd et al., 2013; Osnas et al., 2013). Yet, these relationships do reflect a physical influence of leaf structure on photosynthetic rate per mass (Sack et al., 2013; Westoby et al., 2013). Plants with higher LMA, due to thicker and/or denser leaves, tend to have a longer diffusion path and greater diffusion resistance from stomata to chloroplasts. Additionally, greater mass ‘dilution’ of cytoplasmic and chloroplast components by nonmetabolic components such as cell walls and nonstructural carbohydrates (Parkhurst, 1994; Reich et al., 1997, 1998; Roderick et al., 1999a,b; Shipley et al., 2006) would lead to a lower \(A_{\text{m}}\). The negative correlation between LMA and \(N_{\text{m}}\) is also due to the same mass dilution effect (Wright et al., 2004; Sack et al., 2013; Westoby et al., 2013). We expected that this mass dilution effect also exists for other nutrients and mediates the photosynthetic nutrient use efficiency. Recently, a hypothesis that LMA and the LES relationships would be structurally determined by leaf vein density has been proposed (Blonder et al., 2011, 2013, 2014). However, a recent test found that LMA was uncorrelated with leaf vein density across 275 phylogenetically diverse angiosperm species, and within eight of the nine individual families for which sufficient data were available (Sack et al., 2013, 2014). Like conifers, which show LES relationships while having only a single central vein in their needles (Reich et al., 1998), cycads provide a key system for determining whether LES relationships can arise in leaves that lack minor veins within their lamina.

The third trait tested for association with photosynthetic rate was xylem water transport efficiency. Leaf or stem hydraulic conductance has been found to be closely associated with leaf transpiration rate and maximum photosynthetic rate within the same species under different environmental conditions, within several sets of angiosperm species, and across representatives of many lineages (Kuppers, 1984; Meiner & Grantz, 1990; Sober, 1997; Mencuccini, 2003; Santiago et al., 2004; Brodribb et al., 2007; Campaello et al., 2008; Zhang & Cao, 2009). These data, and manipulative experiments, have indicated that hydraulic conductance places a constraint on stomatal conductance (\(g_{s}\)) and on photosynthetic gas exchange. The leaf hydraulic conductance (\(K_{\text{leaf}}\)) plays a particularly important role because the leaf is a bottleneck in the whole-plant water transport pathway (Sack & Frolé, 2006; Brodribb et al., 2007). Although \(K_{\text{leaf}}\) is well-recognized as a key determinant of \(A_{\text{m}}\) across species in very diverse species sets, the relationships of gas exchange with \(K_{\text{leaf}}\) may be climate- or habitat-specific, as they would tend to shift for optimality between habitats (Sack et al., 2005; Feild et al., 2011b; Sack & Scoffoni, 2013). Additionally, a negative relationship between mass-normalized \(K_{\text{leaf}}\) (\(K_{\text{leaf-m}}\)) and LMA has been reported for angiosperms (Simionin et al., 2012). Given the negative relationship of \(A_{\text{m}}\) to LMA, these relationships may result in a positive association of \(A_{\text{m}}\) and \(K_{\text{leaf-m}}\).

All of these previous findings represent a modern synthetic understanding that leaf structure, nutrient composition, water flux and photosynthetic rates are all related (e.g. Wright et al., 2003; Cramer et al., 2009), and are subject to the general principles of leaf design. However, to confirm the generality of these principles of leaf design, trait relationships need to be evaluated across different ecosystems and taxonomic groups, including lineages other than angiosperms. Cycads represent an ideal model for such a test, given the diversity of extant species, and the earlier origin and previous global dominance of this lineage. We studied cycads in two botanical gardens with similar climates to determine trait differences arising from genetic rather than plastic expression across natural habitats (Monson, 1996). We tested the hypotheses that photosynthetic performance is related to hydraulics, nutrient composition and leaf structure in cycads, and the relationships among functional traits should be similar in cycads to those found for other seed plants. We aimed to extend the understanding and generality of fundamental leaf trait relationships by focusing on the modern representatives of this ancient lineage and to characterize the uniqueness of cycads in foliar trait relationships.
Materials and Methods

Study site and plant material

This research was carried out in the Cycad Garden at Xishuangbanna Tropical Botanical Garden (XTBG; 21°41′N, 101°25′E, elevation 570 m) in southern Yunnan Province and the National Cycad Germplasm Conservation Center at Fairylake Botanical Garden (FBG; 22°34′N, 114°10′E, elevation 100–130 m) in Shenzhen, Guangdong Province, southern China. Mean annual temperature at XTBG is 21.7°C, and mean annual precipitation is 1560 mm with 80–85% occurring in the May–October rainy season (40-yr average, 1959–1998, data from Xishuangbanna Station for Tropical Rain Forest Ecosystem Studies). The soil of the Cycad Garden at XTBG is sandy alluvium with pH of 5.0–6.0; its total nutrient composition is 1.12 mg g⁻¹ N, 0.51 mg g⁻¹ P, 8.49 mg g⁻¹ K, 8.33 mg g⁻¹ calcium (Ca), 2.89 mg g⁻¹ magnesium (Mg), 23.04 mg g⁻¹ Fe, 0.56 mg g⁻¹ manganese (Mn), 73.25 mg kg⁻¹ Zn, and 22.0 mg kg⁻¹ Cu (0–20-cm depth). Soil hydrolyzable N, available P and available K are 66.5, 13.4 and 85.8 mg kg⁻¹, respectively. Mean annual temperature at FBG is 22.4°C, and mean annual precipitation is 1933 mm falling mostly in the May–October rainy season (30-yr average, 1971–2000, data from Shenzhen Whether Station). The soil of the National Cycad Germplasm Conservation Center at FBG is yellow soil with pH of 5.5–7.0, containing 1.25 mg g⁻¹ N, 0.52 mg g⁻¹ P, 16.1 mg g⁻¹ K, 1.20 mg g⁻¹ Ca, 2.82 mg g⁻¹ Mg, 30.13 mg g⁻¹ Fe, 0.42 mg g⁻¹ Mn, 51.4 mg kg⁻¹ Zn, and 9.43 mg kg⁻¹ Cu (0–20-cm depth) in total. Soil hydrolyzable N, available P and available K are 115, 132 and 141 mg kg⁻¹, respectively. The physiological measurements at XTBG were performed in the rainy season 2009, and the measurements at FBG were performed in the rainy season 2011.

Thirty-three cycad species with at least three healthy and mature individuals suitable for physiological measurements were selected for the present study, with 10 from genus Cycas (family Cycadaeae), 19 from genera Ceratozamia, Diouon, Encephalartos, Lepidozamia, Macrozamia and Zamia (family Zamiaceae), and three from genera Bowenia and Stangeria (family Stangeriaceae) (Supporting Information Table S1). These species vary highly in native habitats (Table S1). Based on their native habitats, the species were classified into three classes: native to dry habitats, moist habitats, or both dry and moist habitats (for habitat information see Table S1). The genus Cycas is a sister lineage to all other cycads based on the phylogeny of cycads inferred from morphological characters or gene sequences (Brenner et al., 2003; Chaw et al., 2005; Zgurski et al., 2008). A fossil-calibrated phylogeny dates the Cycas lineage to the Mesozoic, whereas the lineage leading to Zamia dates to the Cenozoic (Nagalingum et al., 2011). Zamia has evenly spaced, longitudinally parallel, dichotomizing veins in leaflets whereas Cycas only has a single middle vein (Stevenson et al., 1996). Leaf hydraulic conductance (Kleaf) was measured for 23 species, given difficulties in removing the effects of mucilage on Kleaf measurement for the remaining 10 species. Sun-exposed individuals were used for physiological measurements except for three shade-tolerant species which were cultivated under a tree overstorey (B. spectabilis, B. serrulata) or in a shade house (S. eriopus). Four species were studied in both XTBG and FBG (Cycas szechuanensis, C. panzhihuaensis, Z. furfuracea, E. gratiss), and these four species were entered twice in the dataset. Six mature leaves from three to six individuals per species were selected for the measurements. Leaflets were chosen as the fundamental unit for measurement and the middle section of the leaves were used for physiological measurements such as gas exchange and nutrient compositions. Leaflets were used, as these are most analogous to angiosperm simple leaves or leaflets, typically measured in studies of functional traits.

LMA, leaf thickness and density

Leaf thickness was averaged from values taken with vernier calipers at five places on each fresh leaflet. Leaf area was determined (LI-3000A area meter; Li-Cor, Lincoln, NE, USA), then the leaves were oven-dried at 70°C for 48 h and analyzed for C, N, P, K, Ca, Zn, Fe and S. Leaf C and N concentrations were determined using a Vario MAX CN auto element analyzer (Elementar Analysensysteme, Hanau, Germany). After the samples were digested with concentrated HNO₃ and HClO₄, leaf hydrolysates were analyzed using an inductively coupled plasma atomic-emission spectrometer (IRIS Advantage-ER; Thermo Jarrell Ash Corporation, Franklin, MA, USA). Nutrient concentrations per unit area were calculated by multiplying mass-based nutrient concentrations by LMA. Photosynthetic N use efficiency (Aₙₑ) and P use efficiency (Aₚ) were determined as Aₙₑ divided by mass-based concentrations of N and P (Nₘₑ and Pₘₑ) respectively. Leaf chlorophyll concentration was measured with a chlorophyll meter (SPAD 502; Minolta...
Leaf hydraulic conductance

Leaf hydraulic conductance (K_{leaf}) was measured using the evaporative flux method (Sack et al., 2002; Brodribb et al., 2007; Sack & Scoffoni, 2012). Leaves were cut from the plants in the late afternoon, recut immediately under water and placed with cut ends underwater and covered with black plastic bags to rehydrate overnight. Measurements of K_{leaf} were made on central segments of leaves, excised underwater, including rachis and 4–18 leaflets rather than on individual leaflets because petiolules of the leaflets were very short or nonexistent. The leaf segment was held horizontal in a frame strung with fishing line, above a fan, and under full sunlight to drive transpiration, with the cut end of the rachis connected to water-filled tubing downstream of a water pressure-drop flow meter with two calibrated pressure transducers (Melcher et al., 2012) logging to a computer, and the transpiration flow rate (E) was monitored. When a steady-state E was reached (i.e., a stable value maintained for at least 3 min), the leaf segment was removed into a ziplock bag that had been exhaled overnight. Measurements of K_{leaf} were connected to water-filled tubing downstream of a water pressure-drop flow meter with two calibrated pressure transducers (Melcher et al., 2012) logging to a computer, and the transpiration flow rate (E) was monitored. When a steady-state E was reached (i.e., a stable value maintained for at least 3 min), the leaf segment was removed into a ziplock bag that had been exhaled into, to prevent dehydration. Leaf water potential (Ψ_t) was determined after at least 30 min equilibration, using a pressure chamber (SKPM 1400; Skye Instruments Ltd, Lladrindod Wells, UK), and leaf area was measured (LI-3000A area meter; Li-Cor). The leaf area-normalized leaf hydraulic conductance ($K_{\text{leaf-a}}$; mmol m$^{-2}$ s$^{-1}$ MPa$^{-1}$) was calculated as the steady-state E/Ψ_t, normalized by leaf area. Leaf temperature during measurement was monitored with a T-type thermal couple logging to a data logger (CR1000; Campbell Scientific, Logan, UT, USA), and $K_{\text{leaf-a}}$ was then corrected for the effects of temperature on the viscosity of water by standardizing to 20°C (Sack et al., 2002; Brodribb et al., 2007). The $K_{\text{leaf-a}}$ reported is the maximum, determined by plotting $K_{\text{leaf-a}}$ against Ψ_t and extrapolating to Ψ_t of zero (Brodribb et al., 2007). Maximum mass-normalized leaf hydraulic conductance ($K_{\text{leaf-m}}$, leaf water supply per dry mass; mol s$^{-1}$ g$^{-1}$ MPa$^{-1}$) was determined as $K_{\text{leaf-a}}$ divided by LMA.

Data analyses

Statistical analyses were applied using SPSS V21 (IBM Corp., Armonk, NY, USA). To examine trait-trait linkages, we tested relationships hypothesized a priori (see the Introduction section and Fig. 1). We analyzed the relationship between functional traits using linear or nonlinear regression according to which best approximated the structure of the relationship. Equal variances of the variables were tested and one-way ANOVAs were used to test trait differences among cycad genera. The differences in slope and intercept of bivariate relationships between cycads and plants from the global datasets (Wright et al., 2004) or an angiosperm K_{leaf} dataset (Simonin et al., 2012) were tested with standardized major axis tests using SMATR v.2.0 (Warton et al., 2006). The study site effect on leaf gas exchange characteristics (A, g, and A_m) was tested by a two-way ANOVA with garden as the fixed factor and species as the random factor using four species studied in both XTBG and FBG (C. szechuanensis, C. panzhihuaensis, Zamia furfuracea, Encephalartos gratius). A principal components analysis (PCA), (Pearson, 1901) was performed to summarize the joint variation of the functional traits (see Table S2) for the 33 species, with mean trait values of each species used for the analyses.

Results

Variation of leaf traits among diverse cycad species

The cycad species varied strongly in leaf gross morphology and shape (Fig. 2), as well as in photosynthetic rate, and stomatal and hydraulic conductance (Tables 1, S3). Stomatal conductance (g) varied 10-fold (from 0.03 to 0.32 mol m$^{-2}$ s$^{-1}$), whereas leaf hydraulic conductance per mass ($K_{\text{leaf-m}}$) varied 13-fold (from 12.1 to 157 mol s$^{-1}$ g$^{-1}$ MPa$^{-1}$; Table S3).

Cycad species also varied strongly in nutrient concentrations and LMA, leaf thickness and leaf density (Tables 1, S3). N_a and P_a varied four- to five-fold, and the area based concentrations of other nutrients varied four-fold (S_a to 20-fold (C_{a_a}). N_m and P_m varied across species three- to four-fold, whereas mass based concentrations of other nutrients varied 1.1-fold (C_{m}) to 20-fold (F_{m}). LMA, leaf thickness and leaf density varied five- to seven-fold across the species (Tables 1, S3). Cycad species also varied strongly in photosynthetic use-efficiency in relation to nitrogen, stomatal conductance and hydraulic conductance (Table 1).

The two genera of shade-tolerant species in family Stangeriaceae ($Bowenia$ and $Stangeria$) showed significantly lower g, A, and LMA than other cycad genera, whereas other genera did not differ significantly on average in any measured trait ($P>0.05$, one-way ANOVA). Further, no significant difference was found between family Cycadaceae and family Zamiaceae in any measured trait (one-way ANOVA). No study site effects (difference between two gardens) on A_m, g, and A_m were detected ($P>0.05$, two-way ANOVA).

Coordination of leaf traits among diverse cycad species

The leaf economic trait relationships that were hypothesized based on those established for angiosperms were also very strong across the cycad species, and there were stronger trait relationships for mass-based than area-based light-saturated CO$_2$ assimilation rate. The A was positively related to g, ($r^2=0.74$,
$P < 0.001$, relationship not shown). Additionally, A_m was negatively related to LMA, and positively related to Chl$_m$, N$_m$, P$_m$, Fe$_m$ (Fig. 3), K$_m$ and S$_m$ (relationships not shown). The relationship between A_m and Fe$_m$ was found when data from each site were analyzed separately ($P < 0.001$). These relationships were significant even without including the two Zamia species (Z. fischeri, Z. vazquezii) that had substantially higher A_m (and in the case of Z. fischeri, substantially higher Fe$_m$) than other species (Table S3; dashed lines in Fig. 3).

In general, many cycad leaf traits were related to LMA, and particularly mass-based traits (Fig. 4). Photosynthetic N and P use efficiencies (A_N and A_P), N$_m$, Chl$_m$, P$_m$, S$_m$ and Fe$_m$ were negatively related to LMA (Fig. 4). Although no statistical association was found between K_{leaf-a} and A_a (Fig. 5a), a significant relationship was found when they were expressed on a mass basis, that is, between K_{leaf-m} and A_m (Fig. 5b).

Comparison of trait ranges with those in previous studies of cycads and other lineages

Our data indicated a very strong physiological diversity among the cycads and similar trait relationships as previously reported.
for other lineages. The wide range of values for K_{leaf-a} and A_a for the 33 cycad species studied encompassed the full range of values previously reported for conifers (Fig. 5a). However, the A_a of cycads were at the high end of the A_a range of conifers and had a higher median (Fig. 5c), whereas K_{leaf-a} of cycads showed similar range and median relative to conifers (Fig. 5d). This helps explain the high A_K values of cycads (Table 1). The A_a of two cycad species (*C. caurisiana* and *C. media*) previously measured by Brodribb *et al.* (2007) were close to the mean values of the cycads in the present study, whereas K_{leaf-a} of those two species were close to the highest value found in this study.

By contrast, in several features, cycads showed lower maximum physiological capacities than angiosperms. Thus, the maximum A_a, A_m, and A_N in cycads were much lower than those in a global database consisting mainly of angiosperm species (Glopnet; Table 1). The mean A_a of cycads was very close to the Glopnet mean and slightly higher than the mean for a dataset of representatives from several plant lineages (angiosperms, conifers, ferns, bryophytes and lycophytes), and much higher than values compiled for mosses and ferns (Table 1). The mean LMA, and mass- and area-based concentrations of N and P for cycads were higher than the Glopnet mean, and also higher than those compiled for mosses or ferns. Consequently, the mean A_a and A_N values of cycads were much lower than the Glopnet mean (Wright *et al.*, 2004), slightly higher than that of ferns, and much higher than that of mosses. The mean K_{leaf-a} of cycads was low relative to other plant lineages, but, the A_K of cycads was higher than the mean for a dataset with representatives spanning all lineages, and higher than that compiled for ferns.

The bivariate relationships among LMA, A_m, and N_m in cycads were generally consistent with the relationships for the species in Glopnet. No statistical differences in slope were found between the two datasets, although the relationships differed significantly in their intercepts (Fig. 6). Cycads tended to have a higher N_m at a given LMA, and a lower A_m at a given N_m, indicating lower photosynthetic N use efficiency compared with the global mean (Fig. 6b,c).

The relationship between K_{leaf} and LMA in cycads generally followed the relationship for species in a combined dataset mainly for angiosperms (Simonin *et al.*, 2012). No relationship was found between K_{leaf-a} and LMA (Fig. 7a), whereas K_{leaf-m} was significantly negatively related to LMA (Fig. 7b). No difference in slope was found between the two datasets, although the intercepts differed significantly ($P<0.01$; Fig. 7b). The intercepts for log(K_{leaf-m}) vs log(LMA) of cycads and angiosperms were 5.31 and 4.84 mol s⁻¹ g⁻¹ MPa⁻¹, respectively.

In a PCA analysis, the first axis, which explained 32% of the total variation, represented the variation in investment in leaf mass structure, and thus with leaf composition and physiology. The first PCA axis was positively related to LMA, leaf thickness, C_m and Chlα, and negatively correlated with A_m, Chlα, A_N, A_P, K_{leaf-m}, N_m, S_m, Fe$^{3+}$, P_m, Zn$^{2+}$, K_m and K_{leaf-a} (Fig. 8a). The second axis, which explained 21% of the total variation, represented the variation in stomatal opening for gas exchange and water use efficiency; this axis was positively correlated with g_s, A_s, K_{leaf-a}, g_k and A_K, and negatively correlated with water use efficiency (A_t/g_s). *Zamia fischeri* and *Z. vazquezii* were separated far from other species along the first axis, whereas shade-tolerant species were

Table 1 Comparison of cycads in this study with Glopnet (Wright *et al.*, 2004), data spanning plant lineages, mosses and ferns in the mean and range of light-saturated photosynthetic rate per area (A_a), light-saturated photosynthetic rate per mass (A_m), photosynthetic nitrogen (N) use efficiency (A_N), light-saturated photosynthetic rate over leaf hydraulic conductance (A_K), N concentration per area (N_a), N concentration per mass (N_m), phosphorus (P) concentration per area (P_a), P concentration per mass (P_m), area based leaf hydraulic conductance (K_{leaf-a}), and leaf mass per area (LMA) values

<table>
<thead>
<tr>
<th></th>
<th>A_a</th>
<th>A_m</th>
<th>A_N</th>
<th>A_K</th>
<th>N_a</th>
<th>N_m</th>
<th>P_a</th>
<th>P_m</th>
<th>K_{leaf-a}</th>
<th>LMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycads</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>9.34</td>
<td>59.5</td>
<td>2.95</td>
<td>2.07</td>
<td>3.38</td>
<td>2.00</td>
<td>0.20</td>
<td>0.12</td>
<td>5.44</td>
<td>178</td>
</tr>
<tr>
<td>Minimum</td>
<td>3.15</td>
<td>23.6</td>
<td>1.42</td>
<td>0.61</td>
<td>1.52</td>
<td>1.22</td>
<td>0.08</td>
<td>0.07</td>
<td>2.50</td>
<td>50</td>
</tr>
<tr>
<td>Maximum</td>
<td>14.1</td>
<td>179</td>
<td>6.06</td>
<td>3.98</td>
<td>6.57</td>
<td>3.01</td>
<td>0.39</td>
<td>0.24</td>
<td>10.1</td>
<td>323</td>
</tr>
<tr>
<td>Glopnet</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>11.5</td>
<td>128</td>
<td>6.31</td>
<td>1.94</td>
<td>1.94</td>
<td>0.13</td>
<td>0.11</td>
<td></td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>1.00</td>
<td>4.80</td>
<td>0.63</td>
<td>0.26</td>
<td>0.25</td>
<td>0.02</td>
<td>0.01</td>
<td></td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>42.0</td>
<td>662</td>
<td>25.5</td>
<td>9.14</td>
<td>6.36</td>
<td>0.88</td>
<td>0.60</td>
<td></td>
<td>1510</td>
<td></td>
</tr>
<tr>
<td>Sampling across plant lineages</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>8.16</td>
<td></td>
<td>1.12</td>
<td>0.08</td>
<td>0.80</td>
<td>0.50</td>
<td>8.11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>0.89</td>
<td></td>
<td>0.35</td>
<td>0.03</td>
<td>0.24</td>
<td>0.50</td>
<td>19.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>19.0</td>
<td></td>
<td>3.03</td>
<td>0.12</td>
<td>1.51</td>
<td>21.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mosses</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>0.93</td>
<td>8.11</td>
<td>0.01</td>
<td>0.08</td>
<td>0.80</td>
<td>0.13</td>
<td>12.3</td>
<td>5.29</td>
<td>2.20</td>
<td>5.23</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.59</td>
<td>3.31</td>
<td>0.01</td>
<td>0.03</td>
<td>0.24</td>
<td>0.20</td>
<td></td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Maximum</td>
<td>1.41</td>
<td>14.0</td>
<td>0.03</td>
<td>0.12</td>
<td>1.51</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Ferns</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>4.50</td>
<td>67.5</td>
<td>2.88</td>
<td>1.30</td>
<td>1.64</td>
<td>1.75</td>
<td>0.08</td>
<td>0.09</td>
<td>2.93</td>
<td>90</td>
</tr>
<tr>
<td>Minimum</td>
<td>1.10</td>
<td>9.40</td>
<td>0.86</td>
<td>0.67</td>
<td>0.53</td>
<td>0.80</td>
<td>0.03</td>
<td>0.04</td>
<td>0.50</td>
<td>37</td>
</tr>
<tr>
<td>Maximum</td>
<td>12.3</td>
<td>115</td>
<td>5.29</td>
<td>2.20</td>
<td>3.54</td>
<td>3.29</td>
<td>0.20</td>
<td>0.13</td>
<td>5.23</td>
<td>158</td>
</tr>
</tbody>
</table>

Data source: cycads, 33 species (present study); Glopnet, 2548 species mainly angiosperms but also including conifers and including three cycads (Wright *et al.*, 2004); data spanning plant lineages, 12 angiosperms, 17 gymnosperms, six ferns, four bryophytes, five lycophytes (Brodribb *et al.*, 2007); Mosses, 10 species (Waite & Sack, 2010); ferns, 19 species (Wright *et al.*, 2004; Brodribb *et al.*, 2007).
separated from other species along the second axis (Fig. 8b). The first and second axes could not separate cycads from FBG and XTBG, but most plants in XTBG fell into the upper two quadrants (Fig. 8b). Species native in dry habitats were not separated from those native in moist habitats or those found in both dry and moist habitats (Fig. 8c).

Discussion

Cycads have previously been described as highly diverse in their overall morphology (Whitelock, 2002). One major novel finding of this study is a correspondingly strong variation among cycad species in leaf physiology and structure. The values for leaf traits, and the coordination of traits showed considerable contrasts with other plant lineages. Most impressively, the cycads showed similar nutrient values, but lower gas exchange for given nutrient values, and no apparent coordination of hydraulics and gas exchange on a leaf area basis across species. However, the cycads were convergent with other lineages in their leaf economic spectrum relationships. A recent molecular dating study suggested that the extant cycads are not older than c. 12 Myr (Nagalingum et al., 2011). However, we hypothesize that these trait relationships first evolved in the ancient cycads and remain in modern cycads because first, cycads show relative morphological, and potentially, physiological stability in the face of long-term climate change (Haworth et al., 2011), and second, fossil and extant cycads have strong morphological similarities.

Just as studies have shown these relationships to hold within and across extant biomes (Reich et al., 1997; Wright et al., 2004), our study extends the existence of these relationships to a lineage dating back 250 Myr, suggesting that they potentially existed for...
the species that dominated in those now extinct ecosystems. Further, the presence of these relationships among cycads just as previously found for angiosperms and conifers indicates that these trait relationships appeared multiple times as leaves evolved distinctly in different major seed plant lineages.

High variation in leaf functional traits and comparisons with other lineages

The high variation in leaf structural and physiological traits found among the cycad species within common gardens points to genetic divergences across species native to contrasting

Fig. 5 The relationship between light-saturated photosynthetic rate and maximum leaf hydraulic conductance expressed on an area basis (A_a and K_{leaf-a}), and on a mass basis (A_m and K_{leaf-m}) and box plots of A_a (c) and K_{leaf-a} (d) of cycads compared with other plant groups. Green circles, Xishuangbanna Tropical Botanical Garden (XTBG); red circles, Fairylake Botanical Garden (FBG); blue open circles, shade-tolerant species. (a) Error bars indicate ± SE. The solid line is a linear regression fitted to the data with shade-tolerant species (blue open circles) not included. The grey points are data for different taxonomic plant groups from Brodribb et al. (2007). (c, d) Boundaries of the boxes indicate the 25th and 75th percentiles, whiskers denote the 90th and 10th percentiles, points represent observations beyond these percentiles and internal lines denote the medians.

Fig. 6 Relationships between leaf mass per area (LMA) and mass based light-saturated photosynthetic rate (A_m), between LMA and leaf nitrogen concentration (N_m), and between N_m and A_m across cycads in Xishuangbanna Tropical Botanical Garden (XTBG, green circles) and Fairylake Botanical Garden (FBG, red circles) and the global dataset (Glopnet). The grey points are global dataset of Wright et al. (2004). All variables were log-transformed. Solid lines are standardized major axis (SMA) lines fitted to the global dataset, whereas break lines SMA lines fitted to the cycad species with shade-tolerant species (blue open circles) not included. ns, no significant difference ($P > 0.05$); *, $P < 0.05$; **, $P < 0.01$; ***, $P < 0.001$.

New Phytologist 2015
www.newphytologist.com

© 2015 The Authors
New Phytologist © 2015 New Phytologist Trust
environments (Monson, 1996). Although the dominance of cycads in terrestrial ecosystems has declined since the late Mesozoic, cycads still grow successfully in a wide range of habitats from very moist tropical rainforest to dry lands and high elevations (Norstog & Nicholls, 1997; Whitelock, 2002). The native habitats of the cycad species used in this study also varied greatly in their native water regimes. The cycads varied especially strongly in traits known to shift across habitats differing in water availability, such as LMA, photosynthetic traits and leaf hydraulic conductance (K_{leaf}). Indeed, the range of values for cycads extended across the whole range of the values previously reported for other gymnosperms. Notably, cycads possessed higher K_{leaf} and A_{a} than more primitive plant groups including bryophytes, lycophytes and ferns (Brodribb et al., 2007; Waite & Sack, 2010), which contributes to higher relative growth rates for a given level of leaf allocation (Sack et al., 2005; Zhang & Cao, 2009).

Recently the higher maximum values of K_{leaf} and A_{a} of angiosperms has been proposed to have contributed to, or driven their dominance over earlier groups since the Late Cretaceous (Brodribb & Feild, 2010; Feild et al., 2011a). Similarly, the higher values for cycads than modern members of more primitive lineages (bryophytes, mosses and ferns), together with their high diversification in leaf structure and function, provide a potential physiological explanation for the dominance of cycads across a variety of terrestrial habitats in the Mesozoic, assuming that this range of trait values also characterized ancestral cycads, as discussed earlier.

Compared with angiosperms, however, cycads, like other gymnosperms, exhibited lower maximum and/or mean values for K_{leaf}, A_{a} and A_{m} (Table 1). These traits would be related to low relative growth rates and lead to a major disadvantage for gymnosperms compared with angiosperms (Bond, 1989; Berendse & Scheffer, 2009). The lower K_{leaf} of the cycads compared with angiosperms may relate to their low leaf vein density, which limits development of high transpiration and photosynthetic rates and imposed a major disadvantage on cycads competing with angiosperms (Boyce et al., 2009). Indeed, cycads had lower A_{m} for a given N_{m} than the mean for seed plants (Fig. 6c), that is, lower photosynthetic N use efficiencies (A_{N}). This difference may have arisen due to greater partitioning of N to nonphotosynthetic structures (Hikosaka, 2004). Although information on N partitioning of cycads is unavailable, cycads have high concentrations of lignin, leaf mucilage and other secondary compounds (Norstog & Nicholls, 1997; Brenner et al., 2003), requiring substantial
investment of N and other nutrients. The higher LMA of cycads compared with the GloPlant mean agrees with their high investments in leaf toughness and herbivory defense (Clark & Clark, 1988; Prado et al., 2014) and potentially high leaf longevity compared with other seed plant lineages (up to 106 months for M. riedleri; Wright et al., 2004). The lower K_{leaf-a}, A_s, A_m and A_d of cycads than angiosperms would impose disadvantages for competing with later seed plants, and by hypothesis, would have contributed to the decline in dominance of cycads in late Mesozoic (Cretaceous), when angiosperms began to diversify and establish dominance (Crane et al., 1995; Berendse & Scheffer, 2009).

Relationship between leaf hydraulic conductance and leaf photosynthetic capacity in cycads

A positive relationship between area-based K_{leaf-a} and A_s previously has been shown for plants across a variety of taxonomic groups including bryophytes, lycopods, ferns, gymnosperms and angiosperms (Brodribb et al., 2007). As described in the Introduction, the close relationship between leaf hydraulics and photosynthesis has been generally explained by the importance of efficient leaf water supply for maintaining relatively high leaf water potential during transpiration to allow stomata to remain open. However, no association was found between K_{leaf-a} and A_s across the cycad species studied. The absence of a relationship between K_{leaf-a} and A_s may be due to the fact that the cycad species originate in habitats with a wide range of water availabilities (e.g., soil water potential and vapor pressure deficit). Plants of a given life form and from habitats with similar water availabilities converge in a relatively narrow range of Ψ_l during peak transpiration, and therefore g_s could be associated with K (hydraulic conductance) as $g_s = K \times (\Psi_l - \Psi_{soil}) / VPD$. Species from habitats with different water availabilities may operate at different Ψ_l, decoupling the coordination between leaf hydraulic conductance and gas exchange properties (Sack et al., 2005; Feild et al., 2011b; Sack & Scoffoni, 2013). However, no coordination between leaf water transport and photosynthetic rate was detected even when the relationship was tested in species native to habitats with similar water availabilities (data not shown). Alternatively, decoupling between leaf water transport and photosynthetic rate could have arisen due to the influence of other factors such as leaf water storage, especially as cycad leaves possess hypodermis and transfusion tissues (Hu & Yao, 1981), which might allow stomata to remain open despite low water transport across the lamina. Indeed, cycads tend to have higher A_s despite similar K_{leaf-a} to conifers (Table 1; Fig. 5), representing a higher photosynthetic performance relative to hydraulic investment. Another potential factor contributing to the water and carbon decoupling is that some cycad species could be Crassulacean acid metabolism (CAM)-facultative plants (e.g., D. edule) (Vovides et al., 2002), which would result in relatively high photosynthetic water use efficiencies. The relationship between K_{leaf-m} and A_m would arise from a negative relationship between K_{leaf-m} and LMA (Fig. 7b). Indeed, the negative relationship between K_{leaf-m} and LMA in cycads generally agreed with the relationship reported for angiosperms (Simonin et al., 2012), suggesting a strong generality in this relationship. The mathematical source of this negative relationship is that K_{leaf-m} is calculated as K_{leaf-a} divided by LMA, and that K_{leaf-a} is independent of LMA. The significance of the trend is a trade-off between mass investment in leaf hydraulics and in leaf longevity (Simonin et al., 2012). The lower K_{leaf-m} at a given LMA in cycads than for angiosperms suggests a relatively low resource investment in leaf hydraulic system.

Trait relationships in cycads with respect to the global leaf economic spectrum

The relationships of fundamental leaf functional traits for cycads generally agreed with previously reported trait relationships in the global leaf economic spectrum (Field & Mooney, 1986; Reich et al., 1997; Wright et al., 2004). Recent studies have also revealed that ferns and mosses follow the global leaf economic spectrum in general, though LMA was replaced by canopy mass per area for mosses (Karst & Lechowicz, 2007; Waite & Sack, 2010). Therefore, the fundamental ecological and physiological trade-offs constraining leaf functional traits apply not only to late-derived seed plants, but also to relatively primitive living plants such as mosses, ferns and cycads, confirming the generality of the principal trade-offs. Notably, Z. fischeri showed much lower LMA and leaf thickness, and much higher A_m, K_{leaf-m} and nutrient concentrations than other cycad species. However, the leaf traits of even this ‘outlier’ species followed most of the functional trait relationships among other species, indicating tightly bounded domains constraining leaf traits (Reich et al., 1997; Meinzer, 2003; Shipley et al., 2006).

Another novel aspect of our study is the expanded set of nutrient relationships important in the leaf economic spectrum. In addition to the relationships among LMA, A_m, N_m and P_m, we found relationships of LMA and A_m with Fe$_m$ and Sm$_m$, as well as between LMA and photosynthetic nutrient use efficiencies (A_N and A_P). Indeed, Fe$_m$ was more strongly related to A_m than N_m, which agrees with the Chinese traditional knowledge that cycads show strong preference for Fe and soil addition of Fe may increase growth rates of some cycads. Fe is related to numerous electron transfer reactions and biochemical processes in photosynthesis and is required for biosynthesis of chlorophyll (e.g., Spiller & Terry, 1980). The concentration of Fe in the nontoxic range has been positively related to the amount of photosynthetic machinery and consequently to photosynthetic capacity (Spiller & Terry, 1980). The generality of these relationships needs to be tested in other taxonomic groups. Notably, the nutrient concentrations of cycads were close to the mean values for dominant angiosperm species across geographical locations in China (Hou, 1982), whereas N_m and P_m of cycads were even slightly higher than the GloPlant mean. Although cycads are often able to fix N via symbiotic cyanobacteria in roots, the strong relationship between nutrient concentrations and A_m suggests a conserved proportion of nutrients invested in photosynthetic machinery and thus to A_m. A limitation imposed by the amount of photosynthetic machinery on A_m was also indicated by the strong
Relationship between Chl_m and A_m. Apparently due to a lack of data of nutrient concentrations other than N and P in the global dataset, interspecific relationships among concentrations of nutrients other than N and P with A_m and LMA have not been established across other taxonomic groups.

In conclusion, the relationships among cycad leaf functional traits generally agreed with the global economic spectrum, confirming the generality of the fundamental trade-offs, and potentially extending these principles of leaf design to the ancient past. High leaf hydraulic conductance and photosynthetic rate in cycads compared with bryophytes, lycophytes and ferns, as well as high diversification in leaf structure and function would have facilitated their dominance in a variety of ecosystems in the Mesozoic. Low leaf water supply and photosynthetic nutrient use efficiencies in cycads relative to angiosperms could be a potential factor in limiting their development of higher growth rates. Nutrients other than N (e.g. Fe and S) explained a significant amount of variation in A_m of cycads as well, suggesting the importance of introducing nutrients other than N and P into a higher resolution understanding of the leaf economic spectrum. Interestingly, no coordination between leaf hydraulic conductance and photosynthesis was found among cycads but overall they tended to have higher photosynthetic performance relative to hydraulic capacity compared with other plant lineages.

Acknowledgements

We thank Dr D. Ackery and three anonymous reviewers for their careful reading of our manuscript, and their constructive comments and suggestions. We thank the Biogeochemistry Laboratory of our botanical garden for the determination of nutrient concentrations. We also would like to thank Mrs Fu Xuewei, Yang Qiuyun, Zeng Xiaodong and Li Shuai for their assistance in the field measurements, and S. Mathews and M. Bartlett for assistance with analyses. Support from the National Natural Science Foundation of China (31170399) is gratefully acknowledged.

References

Supporting Information

Additional supporting information may be found in the online version of this article.

Table S1 Cycad species studied in Xishuangbanna Tropical Botanical Garden (XTBG) and Fairylake Botanical Garden (FBG), origin and native habitats.

Table S2 Traits, symbols and units.

Table S3 Means and SE for each trait by species.

Please note: Wiley Blackwell are not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing material) should be directed to the *New Phytologist* Central Office.

About New Phytologist

- *New Phytologist* is an electronic (online-only) journal owned by the New Phytologist Trust, a **not-for-profit organization** dedicated to the promotion of plant science, facilitating projects from symposia to free access for our Tansley reviews.

- Regular papers, Letters, Research reviews, Rapid reports and both Modelling/Theory and Methods papers are encouraged. We are committed to rapid processing, from online submission through to publication ‘as ready’ via *Early View* – our average time to decision is <26 days. There are **no page or colour charges** and a PDF version will be provided for each article.

- The journal is available online at Wiley Online Library. Visit www.newphytologist.com to search the articles and register for table of contents email alerts.

- If you have any questions, do get in touch with Central Office (np-centraloffice@lancaster.ac.uk) or, if it is more convenient, our USA Office (np-usaoffice@lancaster.ac.uk)

- For submission instructions, subscription and all the latest information visit www.newphytologist.com